
Declaration: At first students are requested to install

Matlab/Octave (Free on internet, no need to password)
software to do the image processing program.

Getting started:

Here displays the following using Matlab. Students can run the
program in Octave.

The first thing to do is to call the Matlab environment. Depending on which platform you are using,

this can be clicking on an icon (Windows) or typing the matlab command in a shell (Unix, Linux,
DOS). Whatever this is, you should end up with a prompt that resembles:

 < M A T L A B >
 Copyright 1984-1999 The MathWorks, Inc.
 Version 5.3.1.29215a (R11.1)
 Oct 6 1999
 To get started, type one of these: helpwin, helpdesk, or demo.
 For product information, type tour or visit www.mathworks.com.
>>

You just entered the Matlab interpreter. You may now type commands and the result will be
displayed as a response, just as in any shell.
Some useful general commands are:

 quit exits the environment.

 help <command> where <command> is a Matlab command. By itself, help gives the

list of toolboxes (packages) that are installed on your system.

 lookfor <something> where <something> is what you are looking for in plain English.

Actually, lookfor searches the expression <something> in the help pages. Try lookfor
Fourier for example.

 pwd and cd allow you to navigate in the directory structure (Unix-like notation).

 who gives you the list of variables currently defined. whos gives you the same list with

their size.

 clear all clears all variables. clear <var1 var2> clears only the variables <var1 var2>.

 close all close all figures. close closes the current figure.

 help general extends this list of generic commands.

Online calculation and multidimensional
variables

The matlab interpreter will respond to commands you will input at the prompt. These commands

can either be ``system commands'' (eg cd) or ``calculation commands'' (eg 1+1).

Online calculation

Type

>> 1+1

the system responds and prompts for the next command:

ans =
 2
>>

(which makes worthy a CHF 1000.- investment!).

By default the result is set into a variable called ans. Therefore, typing whos gives you something

like

>> whos
 Name Size Bytes Class
 ans 1x1 8 double array
Grand total is 1 elements using 8 bytes

which is fairly explicit. If you would like the result to be stored in some other variable a, say, type

>> a=1+1
a =
 2

This therefore declares and sets the variable a to 2. From now on, a may be used for its value

>> b=a+2
b =
 4

and so on. You may declare any variable, provided its name follows some simple rules (eg, starts
with a letter, no +,-,/-* signs, etc).
Anytime you type a command, Matlab outputs the result. This may be avoided with terminating the
command by a semi-colon (;). Therefore:

>> a=1;
>> b=2;
>> c=a+b
c =
 3

or

>> a=1;b=2;c=a+b
c =
 3

Note the difference with

>> a=1,b=2,c=a+b
a =
 1
b =
 2
c =

 3

You now know how to create (and delete - clear) variables. All generic operations are available in

Matlab, use help elfun (elementary functions) for a list (see also help ops and help specfun).

Multidimensional variables

Typing a=1 creates a scalar variable a. Matlab generalises this principle to vector and matrices (a
vector being a matrix with one dimension set to 1). Therefore,

>> u=[1 2 3]
u =
 1 2 3
>> v=[1;2;3]
v =
 1
 2
 3

create a row (u) and a column (v) vector. More generally,

>> m=[1 2 3 4; 5 6 7 8; 8 9 10 11]
m =
 1 2 3 4
 5 6 7 8
 8 9 10 11

creates a matrix.
Provided their sizes correspond, most operations are available for matrices. A lot of specific

operations related to linear algebra are also available and can be listed using help matfun. Note

that some operations operate on the term level (cos, log, etc).

Matlab offers two other types of operations on matrices. Firstly, one may add (or multiply) a
constant value to all the matrix elements

>> m+1
ans =
 2 3 4 5
 6 7 8 9
 9 10 11 12

Secondly, one may combine matrices globally

>> m=[1 2;3 4];
>> n=[1 0;0 1];
>> m*n
ans =
 1 2
 3 4

(classical matrix multiplication). Or locally

>> m.*n
ans =
 1 0
 0 4

(term per term multiplication). The fact of adding the ``.'' in front of * and / operators makes them

operate locally.

Specific commands

Matlab offers several matrix manipulation commands (see help elmat for a list (these include
commands for creating some specific matrices). The most basic command being the transpose

command given by '
>> m=[1 2;3 4]
m =
 1 y 2
 3 4
>> m'
ans =
 1 3
 2 4

See also help sparfun for a list of commands operating on sparse matrices.
Whenever it comes to creating a list, Matlab uses matrices. Matlab offers a simple mechanism for
creating some specific lists For example, the integers between 1 and 5 are given by

>> a=1:5
a =
 1 2 3 4 5

The syntax actually generalises with a step from:step:to

>> a=1:0.5:4
a =
 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000

Accessing variable elements

Matlab uses parenthesis for accessing matrix (or vector) elements

>> a=2*(1:10);
>> a(5)
ans =
 10
>> m=[1 2 3 4; 5 6 7 8; 8 9 10 11];
>> m(1,2)
ans =
 2

(note that for matrices we have M(row,column)). The previous mechanism gives us a technique

for extracting parts of vectors and matrices:

>> m=[1 2 3 4; 5 6 7 8; 8 9 10 11];
>> u=m(3,2:4)
u =
 9 10 11
>> b=2:4;
>> x=m(3,b)
x =
 9 10 11
>> v=m(:,4)
v =
 4
 8
 11

3D arrays

Since version 5, Matlab offers the management of 3D arrays.

>> d(:,:,1)=[1 2 3;3 4 5];
>> d(:,:,2)=[2 3 4;5 2 4];
>> d(:,:,3)=[3 4 6;7 9 3];
>> d(:,:,4)=[3 6 7;2 3 5];
>> whos d
 Name Size Bytes Class
 d 2x3x4 192 double array

Provided sizes are consistent, matrices operations may apply on these 3D arrays.
This is one form under which a RGB images will be stored.

Matlab programs

Matlab goes beyond this simple interaction. It offers a complete set of programming commands
that can be used to create loops, tests and other structure any other programming language can

offer (see help lang for a list).

Creating programs

Up to now, commands were typed one after each other within the interpretor. Matlab offers the
possibility to create batch programs (and functions) that can be called from the interpretor (and
from other batch programs). Actually most of high-level commands of matlab correspond to batch
programs. The technique is simple:

 create a file mycommand.m in the current directory
 type commands in this file

 execute these commands by typing mycommand in the interpretor.

Example:

Write these lines in the mycommand.m file:

% this is my first Matlab program
a=1;
b=3;
c=a+b;
fprintf(1,'c is now %d\n',c);
and type mycommand

>> mycommand
c is now 4

The detail of commands in the mycommand.m file can be found via the help facility. One thing to

note is that anything after a percent (%) is a comment.

One may also create functions in a similar way. Type this in the myfunction.m file

function [result]=myfunction(a)
% [result]=addtwo(a)
% adds 2 to the input
% this is my first Matlab function
result=a+2;
and try

>> b=myfunction(3)
b =
 5

Here, it is important that the function has the same name as its file. One nice feature is that this
permits online help, created by the first comments in the function file.

>> help myfunction
 [result]=addtwo(a)
 adds 2 to the input
 this is my first Matlab function

From then on, one can build a complete library (toolbox) of functions with the appropriate

documentation. Simply put all function files in a directory dir, add its path on the search path (with

addpath('dir')). help dir will then display the first comments of each M-file. Any toolbox is done

like this (try which logm) to see the file corresponding to the logm command.

Programming instructions

On top of calculations commands, Matlab proposes generic programming instruction for creating
loops, test and so on.

if test

if I == J
 A(I,J) = 2;
elseif abs(I-J) == 1
 A(I,J) = -1;
else
 A(I,J) = 0;
end

Note: The NOT condition is given by the tilde (~=, not equal).

for loop

for I = 1:N,
 for J = 1:N,
 A(I,J) = 1/(I+J-1);
 end
end

Note that instead of 1:N we could have any integer row vector.

while loop

E = 0*A; F = E + eye(size(E)); N = 1;
while norm(E+F-E,1) > 0,
 E = E + F;
 F = A*F/N;
 N = N + 1;
end

switch test

switch lower(METHOD)
 case {'linear','bilinear'}
 disp('Method is linear')
 case 'cubic'
 disp('Method is cubic')
 case 'nearest'
 disp('Method is nearest')
 otherwise
 disp('Unknown method.')
end

See help lang for further instructions.

Some useful commands and tips

Commands

When manipulating matrices and images, the following commands are often very useful (see their
respective help).

 length returns the largest dimension of an array.

 size returns the dimension of an array

 sum sums the element of an array along its first non-singleton dimension (columns for a
matrix)

 max returns the largest element of an array along its first non-singleton dimension

(columns for a matrix)

 min returns the smallest element of an array along its first non-singleton dimension
(columns for a matrix)

 rand generates random numbers

 sort sorts numbers

 conv2 operates a 2D convolution between a matrix and a mask

 imread reads an image in a given format as a matrix

 imwrite write a matrix as an image

 fft2, dct2 2D- Fourier and DCT transform of an array.

Tips

 Have explicit names for variables
 When creating a matrix, declare it first as a complete array rather than element by element.

Compare:

clear m;
for i=1:500
 for j=1:500
 m(i,j)=i+j;
 end
end

and

clear m;
m=zeros(500);

for i=1:500
 for j=1:500
 m(i,j)=i+j;
 end
end

 Use global operations rather than local, ie

u=1:500;
v=u.*(u>500);
rather than

u=1:500;
for i=1:500
 if u(i)>500
 v(i)=u(i);
 else
 v(i)=0;
 end
end

 use [value index]=sort(rand(1,n)) to generate a random selection within the set of the

first n integers.

